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ERGODICITY OF CYLINDER FLOWS ARISING 
FROM IRREGULARITIES OF DISTRIBUTION 

BY 

ISHAI OREN' 

ABSTRACT 

Let T be the rood 1 circle group, a E T he irrational and 0 </3 < 1. Let E he 
the closed subgroup of R generated by /3 and 1. Define X = T x  E and 
T : X ~ X by T(x, t) = (x + a, t + lt~.~j(x) -/3). Then we have the theorem: Tis  
ergodic if and only if ~ is rational or 1, a and/3 are linearly independent over the 
rationals. 

I. Introduction 

Consider  the compac t  g roup  T = [0, 1), and let a E T be irrat ional  and 

0 < / 3  < 1 satisfy / 3 E Z a ,  i.e. /3 is not a mult iple  of a m o d  1." Let  E be the 

closed subgroup  of R gene ra t ed  by 1 and/3 .  Of  course  E = R if /3 is i r rat ional  

and E =--'Z otherwise.  Set X = T x E and define T :  X ~ X  by 

T ( x ,  t )  = (x  + a ,  t + llo.t3](x ) - / 3 ) .  

This  is up to an immater ia l  change  of scale the most  genera l  t r ans format ion  

(x, t ) ~  (x, t + f ( x ) ) ,  where  f ( x )  = a l~o.~l(x) - b satisfies . f r f ( x ) d x  = 0 (and 

a ~ 0), In his survey  of topological  dynamics ,  Veech  [6, 7] asks to de t e rmine  the 

ergodici ty of T relat ive to H a a r  measure .  In this paper ,  the comple te  solut ion to 

this p r o b l e m  is given. Part ial  results were  ob ta ined  by Schmidt  [4] (c~ = 

( ~ / 5 - 1 ) / 4 ,  /3 = ~) and Conze  and Keane  [1] (o~ irrat ional,  /3 =�89 Recent ly ,  

Stewart  [5], based  on the work  of these authors ,  has ob ta ined  ergodici ty in the 

general i ty  p roposed  by Veech,  which is under  the condi t ion /3~I '~  where  

' This paper was prepared while I was very graciously hosted by the Centro de Investigacion y 
Estudios Avanzados, Mexico City. 

" /3 ~ Za is a priori excluded since it implies ~,~-d llo.~j(x + ia) - n/3 bounded. 
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I~'(o~ ) is an uncountablc set of zero measure containing numbers well apl~roxmla- 

ble by multiplcs of o~ (see [6] for definition). ~ In fact, wc have 

THEOREM A. T is ergodic if and only if/3 is rational or 1, ~ and [3 are litzearlv 

independent over the rationals. 

The condition given is easily seen to be necessary. For let E-= E/Z ,  

~" = T • E" and 7 = : .,~ ~ ~" be defined by T(x, t) = (x + c~. t - /3  ). The dynamical 

system (,~, 7 ~) is a factor of the dynamical system (X, T)  (both with Haar 

measures) under the natural projection. Since ergodicity projects to factors, "[" 

must be ergodic if T is. Thus/3 rational or 1, c~ and/3 linearly independent over 

the rationals, which is the condition for the ergodicity of "/:', is ncccssary. 

The hard direction of Theorem A is proved by reversing the argument above, 

i.e. deducing the ergodicity of T from that of ~'. This is accomplished bv 

THEOREM B. Let f E L~,~.(X) satisfy f (T ( x ,  t)) = f(x ,  t) a.e. Then f(x ,  t + 1) = 

f (x,  t) a.e. 

By Theorem B, any non-constant T-invariant function of X defines a 

non-constant 2?'-invariant function on .,~, from which Theorem A follows. 

Set S , ( x ) =  YT';,] ll..~](x + i a ) .  Theorem B also yields 

COROLLARY C. For a.e. x E T ,  {S,(x)-n/3}7,=, is dense in E (assuming 

[3 ~ Za  as always).  

This settles in the affirmative a question posed in [7]. It was observed by 

Nelson Markley that the "a.e ."  in the statement cannot be replaced by "every",  

as there necessarily exist x's with S, (x ) -n /3  semi-bounded. 

The paper is organized as follows. The proof of the main result, Theorem B, in 

light of the previous discussion, is carried out in Section 2. To conclude, Section 

3 contains the few lines needed to derive Corollary C. 

2.  l n v a r i a n t  f u n c t i o n s  a r e  p e r i o d i c  

O u r  a i m  in t h i s  s e c t i o n  is t o  p r o v e  T h e o r e m  B .  S e t  

n I 

t, ( x )  = S ,  ( x )  - n/3 = ~', l i,,. ~ l (x  + io~ ) - n/3. 
I O 

' None of these papers had appeared as of the writing of this paper. As the preprints were also 
unavailable to me, no reference to notation or results therein was made. Recently. Mark Stewart sent 
me a preprint of [5]. On the basis of this paper, it seems that the general idea of using periods (also 
called essential values, after Schmidt) is common to the various approaches, but they limit the 
number-theoretical demonstration of their existence to special cases (where. in the terminology of 
Section 2, multipliers are unnecessary). 
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Then T"(x, t) = (x + na, t + t,(x)). For x E R let [x] denote the closest integer to 

x, (x) = x - [x ] and II x II = I(x)l .  The greatest integer in x will be written as [x J. 

We start with a straightforward bit of measure theory showing how the orbit 

structure of (X, T)  might yield periods: 

PROPOSITION l. If there exist n~ E N and A,~ C T, k = 1,2, . .  �9 such that t,~ ( . )  

is constant on A,,,  limk_~ t,~ (A.~) = c, inf~ m ( A ,  k ) > 0 and limk_= II n~a II = O, 

then f(x, y + c) = f(x, y) a.e. for any T-invariant f E lfo~(X). 

PROOF. Set t,k = t.~ (A,k), and let f E L~,~(X) be T-invariant. Then for every 
N > 0 ,  

f l [ i m ,  I f (x  + nka, y + t ,~)-  f(x,  y + c)l dydx = O. 
N 

Since convergence in L '  implies convergence a.e. for subsequences, by diagonal- 

ization we can find a subsequence {n;,}~=lC{nk}~=l such that 

limk_~ f (x  + n 'ka, y + t,k) = f(x, y + c) a.e. Then for a.e. x E A = lim~ .= sup A,~, 

f ( x , y ) = f ( x  +m~a,y + t m ~ ) ~  f ( x , y  +c)  

for a.e. y E E ,  where {mk}~-~ C{n;,}~=, is such that x EA,,~ Vk. But r e ( A ) > 0 ,  

since infk m(A,~) > 0. Furthermore,  the property of x that f(x,  y) = f(x,  y + c) 

for a.e. y E E is invariant under the ergodic transformation x--~ x + a. Thus 

f(x, y ) = f(x, y + c) a.e. as desired. [] 

Spurred by the proposition, we define a period approximating sequence as a 

sequence {(nt, A~)}?=~, where t,, ( - )  is constant on A~ C T, l im ,~  t,, (A~) = c @ E, 

inf, m (At) > 0 and l i m , ~  II T1 = 0. c will be called the  period of the sequence. 

A period of (X, T)  in general is any d E E such that f (x,  y + d) = f(x,  y) a.e. 

for any T-invariant f E  L~o~(X). Clearly the set of periods forms a closed 

subgroup of E. 

The basic fact that allows us to get t,, (A~) converging for a period approximat- 

ing sequence is its a priori boundedness for certain n~: 

LEMMA 2. l[ p, q > 0  satisfy l a - p / q l < 1/ q 2 and ( p , q ) =  1, then It.(x)l<2 
V x E T .  

This lemma is equivalent to the Denjoy-Koksma inequality. For complete- 

ness we present: 

PROOF Set r = a - p / q .  Let O<=i<=q-1. Then j p = i  (modq)  for some 

O<=j<=q-1. Thus 

ja - lP + jr = i - q q + j r  (mod 1). 
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But ] j r [ = j l r l < q . 1 / q 2 = l / q ,  so either j a ~ ( i / q , ( i + l ) / q )  or j a g  

((i - 1)/q, i/q), depending on the sign of r. 

Thus every interval of the form (i/q,(i + 1)/q) contains exactly one of the 

points ja for 0 -< i, j -< q - 1. The desired conclusion follows immediately. [] 

The uniform distribution of O, a , .  �9 (q - 1)a in the lemma is well known, cf. 

[21. 
In view of Lemma 2, we are led to consider D ( a ) = { O ,  I P, /O,  is a partial 

convergent of a}; i.e., P, /Q,  = ao+ 1/a~+. . .  + 1/a,, where a = ao+ 1/a~ + . . . .  
Basic facts regarding continued fractions will be assumed throughout this 

section. Khinchin's book [3], among many other texts, would provide more than 

ample background. 

The following concept will be the building block with which period approx- 

imating sequences will be constructed: A partial quotient configuration (pqc) is a 

quadruple (q, j, 6, e ), where q E D(a  ), j ~ Z  and [ j ] < q ,  6 /q = (qa ) and e /q = 
(/3 - ja). Always I 6 ] < 1. As for ] e I, it follows from the proof of Lemma 2 that 

]]/3 - j ' a  [l< 1/q for some O<=j'<-q-1.  Thus there always exists a I j ]<q for 

which [ e l <  1. In fact, we can do better. For let 

e(q)= q . min{]]/3 - j a  ] ] [ [ j [<  q} 

for q E D ( a ) .  Then if e(q)740,  we can already prove Theorem B: 

PROPOSITION 3. If 

then 1 is a period of (X, T). 

lim sup e (q) > 0 
qED(~) 

PROOF. Let {q, }7-, C D (a)  be such that e (q,) > 6 > 0 Vn. Fix n. Observe that 

tq. is locally constant except for jump discontinuities of + 1 at 0 , -  a , . - . , -  

( q . - 1 ) a  and - 1  at / 3 , / 3 - a , . . . , / 3 - ( q , - 1 ) a .  Let I,, . . . ,12q. denote the 

intervals of constancy in cyclic order. Since t,. (-)  takes on at most four values 

(Lemma 2), there exists a union of intervals, A,, such that tq. is constant on A. 

and m (A.)  => ~. Let A ', be the union of intervals proximal on the right to those of 

An. 

Noting that the distance between any two discontinuities of tq. is given by 

]l (i - j ) a  I] if the jumps are of the same sign and 11/3 + (i - ] )a  11 otherwise, where 

O<=i,j<=q.-1, we have that min{1/2q.,e(q.)/q,} is a lower bound for the 

lengths ] L [, i = 1,. .  -, 2q,. Since also [ L I < 2/q. (every interval of length 2/q, 
must contain a + 1 discontinuity as in Lemma 2), we have 

I, _-> �89 min {~, e (q.)}, l < i , j < Z q . .  
I ,  = = 
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Lett ing e = min{), 8}, we thus have m(A'.)>=~em(A.)>=~e. Since tq. can take 

on A '. only the values tq. (A . ) - -  1, we can find A "  C A '. such that t,. is constant  

on A", m(A")>-_e/16 and tq.(A")=tq.(A.)+_l. As tq.(A.) and tq.(A") are 

bounded,  Proposit ion 1 applied to subsequences yields two periods of difference 

1, and thus also 1 is a period as desired. [ ]  

I shall now try to present  the intuition that is at the hear t  of the proof  of 

Theorem B. 

Let  q E D(a) be large, f r  I tq(x)l dx may be assumed to be small, else arguing 

as above yields the result. We then try to find a multiplier l E N such that upon 

setting q '  -- lq, tq,(. ) will be close to a good period (a fixed divisor of 1, i.e. 1/m 
where m E Z \ {0I) on a set with measure  bounded from below, and l lq 'a  l[ is 

small. This puts us in position to apply Proposi t ion 1. Since 

tq,(x)= t,(x)+ tq(X + q a ) + . . . +  tq(x +(1 -  1)qa)  

is a superposit ion of tq ( . )  shifted by multiples of qa, careful examinat ion of the 

distribution of t o will give information about  that of t'q. 

We shall separate matters  into two cases. Set B = {x I tq(x) = - (q/3)}. B is the 

set where tq takes its value closest to zero. Since fr  I tq(x)ldx is small, II q/3 II must 

also be small. Thus t, is close to one of - 1, _+ 2 on B c, implying that B must 

have measure close to 1. 

The  first case is when a positive fraction of the integral of I tq (x)  I is achieved on 

B, i.e. fs  Itq(x)Idx is not much smaller than f r  Iq(x)Idx. 
We then seek a multiplier l such that B j = B t 3 ( B - q a ) f q . . .  

(q ( B -  ( l -  1)qa)  has measure bounded  from below, l(q~) is close to a fixed 

divisor of 1 and lllqa II is small. Since tq,(x) = l(q~) on/31, we are in the desired 
situation. 

In the second case we have the opposite  behavior,  where most of f r  I tq(x)[ dx 
is concentra ted on B c. We then demand  of l that the translates of B c fill out a 

good port ion of T in a disjoint manner .  Then  Tq,(x) will be close to -+ 1, - 2 on a 

sizable subset of T. In fact, the values _.+ 2 will be eliminated,  so tq. = _ 1 on this 

set. If we also have ]]lqa ]1 small, the proof  is complete .  

Multipliers as above do not necessarily exist for all q E D(a)  sufficiently large. 

They  will, however ,  exist for an infinite number  of them, as we shall see. 

Call a pqc (q,j ,&e) effective if l e l+l  s 1<�89 The  point  here  is that the 

distribution of tq(. ) is easily computable  for an effective pqc: 

PROPOSITION 4. Let (q, j, 6, e) be an effective pqc. Then setting p = [qfl ], we 
have (qfl)= q~ - p  =(j/q)6 + e and: 



132 1. OREN Isr. J. Math. 

(I) If j > 0 then 

!, + sign (e), 

So(x) = + sign (e +6) ,  

where 

x EPo U ' " U G - ,  t, 

x E P o _ i U . . . U G _ , ,  
otherwise, 

(n) 

where 

_io +q), 
P,= 

l ( _  ia, _ ia + e + 6 ] ,  
q / 

If j < 0 then 

So(x) = sign (e - 6 ) ,  

o<=i<=q- j -1 ,  

q - j<=i<=q-1 .  

x ~ N o U " ' U N q  ,-,, 
x ~ Nq_j U" "" U No-,, 
otherwise, 

Here 

j,( -io io) - q , / 3 -  , 

N~ = [  i(/3 _ ia _(e _ 6 ), /3 _ ia) 

O < i < q + j - 1 ,  

q+j<-_i<=q-1. 

l (a ,b)=l[a ,b] ,  a <b, 
[(b, a), a>b .  

PROOF. S i n c e q a E Z + 6 / q  a n d / 3 - j a ~ Z + e / q ,  w e h a v e q / 3 - q j a E Z + e  

and q [ 3 ~ Z + j q a + e  = Z + ( j / q ) 6 + e .  But [(j/q)6+el<131+]e]<~2, so in- 

deed (q/3) = (j/q)6 + e. 
Now observe: 

(1) Sq(x) is locally constant except for jump discontinuities of +1 at 

0 , - a , "  " - , - ( q -  1)a and - 1  at / 3 , / 3 - a , . . . , / 3 - ( q  - 1)t~. 

(2) Sq(x) is upper semi-continuous. 

(3) The intervals {P~}~-~ or {N~}7~-~ are disjoint. 

PROOF OF (3). Suppose for instance that j > 0  and Pk fq P ~  f~. If either 
0_-k,  l < q - j - 1  or q - j < k ,  l < q - I  or s i g n ( e ) = s i g n ( e + 6 ) , t h e n  either 

- / c a  E P~ or - la @ Pk, as - ka, - let would both be the left endpoints or the 

right endpoints of Pk, P*. Then 
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]](k - l ) a  ][-<max{IPk I, [P~ I} -<-Ie [+16q t < ~ q .  

But I k - l ] < q, so this inequality implies k = l as desired. This remaining case is 

0 -<_ k < q - j _-< l _-< q - 1 (or vice versa) and sign (e) = - sign (e + 6), which will 

lead to contradiction. For again either - ka E P~ or - la + (e + 6 )/q E Pk. The 

first is impossible by the previous argument. Thus we are left with - l a  + 
(e +8) /q  E ( - k a ,  - k a  +E/q).  But then 

II(k -l)a II <[e  1+18 I<1 
q 2q '  

contradiction! The proof for {N~}~-~) is similar. 

(4) The expressions given for the Sq(x) have the right integrals over T. For 
example, if j _--> 0 then 

p + (q  - j ) s i g n ( e )  e ~ + j s i g n ( e  + 6) le + 6 I= p +q  - J e  +J-(e + 3) 
q q q q 

= p + e +J-6 = qfl = [ Sq(x)dx. 
q Jr 

Properties (1)-(3) yield the desired formulas for Sq up to an additive constant. 

Property (4) then seals the proof. [] 

If one tries to put the superposition idea to use, immediately surfacing is the 

requirement that the size of the increment in shifts, II qa I[ = I 81 / q, should not be 

much bigger than the size of the intervals {P~}~2~ or {N~}~-~ as above, which gets 

to be as small as [ e l / q .  Thus we need 

LEMMA 5. Let (q, j, 3, e ) be a pqc with I e I < [ 6 [ / 1000. Then there exist q' > q, 
3' and e' such that 

(1) (q',j ,  6', e') is an effective pqc, 
(2) 1/1oo> I e'l > [ 6'1/lO00. 

PROOF. Since ]e I<J ~ J/1000< 1/1000, we can define 

= max{d E o( )ld < q/10001 e I}. 

Writing r + = m i n { d E D ( a ) l d > r }  for every r E D ( a ) ,  we have 4 * =  > 

qllO001 e I or 1 /4§  < 10001 e I Iq. B u t  II #,~ II < 1/4 ', so 

It gla Jt <- _ 10001 e t / q. 

Now by Hurwitz's Theorem, there exists 

q '  = min{d e D(o~) I d _->,~ and II do< 11< 1/,,/5at, 
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and q'E{q,q+,q§ Immediate inspection then yields q ' <  lOq, from which 
q' <q/lOOle [. 

Then set e '=  (q'/q)e and 6 ' = q ' ( q ' a ) .  Since l e ' l <  1/100 and 
[3 - ja E Z + e'/q', (q, j, 3', e') is a pqc. It is effective because also 16'1 < 1/V'5. 

Finally, 

10oot~ I = looo1~'1 
IJ q'a it <--II qa II < q q' 

so 16'1 < 10001 e'l. [] 
It will be important in the use of Lemma 5 that j remains unchanged, 

excluding for example the trivial j ' =  j -  sign (j)q. 

The two cases of the superposition argument can now be identified as (1) and 

(2) below: 

LEMMA 6. Suppose that 
lira e ( q ) = 0 ,  

q~D(ct ) 

and let 0 <  a < 1 be given. Then there exist infinitely many effective pqc's 
(q, j, & e ) such that [ e [ >= [ 3 [/1000 and one of the following is true : 

(1) IIq/31l_->a le l, or 
(2) Ilq/3]l< a le I and [jl<=q/2. 

PROOF. Let (q,j, 6, e) be an effective pqc, q arbitrarily large, with [ e [ < 1/100 
(effectivity can be guaranteed by demanding 13 I < 1/V'5). This is the only place 
where e(q)---~O is used. Utilizing Lemma 5 if necessary, let q ' >  q, e '  and 6' be 
such that (q',j, 3', e') is an effective pqc and 1/100 > ] e'[ => 16'1/1000 (no change 

if originally l e i>=l 6 1/1000). 
Now we may assume 

[[q'/3}l= 6 ' + e '  < a l e ' l  and I j [ > 2  ~ ,  

otherwise one of (1) or (2) holds. Set j ' =  j - s ign  0')q' and e" = e ' +  sign (j)6'. 
Note that [j'l < q'/2. Then / 3 - j ' a  =/3- jo t  + sign(j)q'a E Z+e"/q ' .  Since 

l e " [ < l e ' [ + [ 6 ' [ < � 8 9  (q ' , j ' , 6 ' , e" ) i s  a pqc. It is effective since [ e ' [< l / 100 ,  

[ ( j / q ' ) 6 ' + e ' l < a l e ' [  and [ j l>q ' /2  imply that [ 6 ' 1 < 4 [ e ' 1 < 1 / 2 5 ,  so 

1~"1+16'1-_<1~'1+16'1+16'1<�89 
Again using Lemma 5 if necessary, let q">-q', 6" and e "  be such that 

(q", j ' ,  6", e '") is an effective pqc satisfying [ e '"1 > [ 8"1 / 1000. Since I J'l < q'/2 <= 
q"/2, either (1) or (2) must hold, finishing the proof. [] 
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If the pqc's (q,j. 6. e)  genera ted  by I .emma 6 will have lim s u p e  > 0 ,  the 

period I for (X, T) will be easily constructed (note that this is not in contradic- 
tion to lim. .... ., ~). ,~e(q)= 0). The alternative instances of (1) and (2) are then 

handled by the next two proposit ions.  

PROPOSrHON 7. Let {(q., j., ,~., ~. )}~-, be a sequence of effective pqc' s satisfying 

lim . . . .  e. = 0 and ; e. ] >-_ l 6. i/10(D, [I q./3 I1--> a I e. [ Vn, where 0 < a < 1 is fixed. 
Then for every m > lOS/a there exist indexes {nk}~=, CN and multipliers {lk}~-~ C 

N for which {(q'.~, Ak )}; ~ is a period approximating sequence with period + 1/m, 

where q.~ = l~q~ and Ak = {x C T ] q~ E (~, ~)}. 

PROOV. First observe that lira . . . .  11q./311--0 This holds since 11q./311< 
I&, [ + l e. I --< 1001 [e~ I and the latter tends to zero  by assumption.  Fix m > lOS~a, 

and pick {nk}~=, such that sign ( (q . f l ) )  is constant,  ]e.~ I<  10 5 and ]]q.fl 11 < 1/m 
Vk. We may without  loss of generali ty assume that nk = k. Then set lk = 

[1/(m II q,,t3 ]/)J. 
Now for i = 0 , . . . , q ~ - l ,  

Hqda If <-- i [t qkot 11=i 16J' i < l k  16k t =  < 103Ik I~k 1 
qk 

~lo%llq,,t311__<lO~ 1 <10_~. 
a ma 

Since [[qd3 II < 1/10-', we thus have Vx E Ak 

Sq~(x)-- # {0=<i < q'k [ x + ia E [0,/3]} 

=Ik # {O<=i<qk [x +ia~[O,~l} 

Therefore  

= l,[qd3]. 

tq~[x ) -- S~,(x ) - q 'k~ = lk [qk/3 ] -- lkqk~ = -- Ik (qd3 ), 

The convergence of tq~(Ak) now follows since IIqd311---~O implies 

lk II qk[3 H ~ I/m, so - Ik (qd3)---~ u 1/m, depending on the sign of (qd3). Finally 

][ q 'ka ll = ]l lkqka ]] < lk ][ qka ]] <= m ]] qd31 ][]]qka]l<=ma]~k]/qklekl<__.q~l 

Thus lim ~_~ [[ q ;,a l] = 0 to finish the proof.  []  

PROPOSITION 8. Let {(q,,j,,, &,, e,, )}~,  be a sequence of  effective pqc" s such that 
l i m . _ ~ e . = l i m . . ~ e ~ ' l l q . [ 3 ] ] = O  and [e. l>=[6.1/ lO00,  [j.[<-_q./2 Vn. Then 
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there exist indexes {nk}~=, CN, multipliers {lk}~-, CN and sets Ak C T such that 
{(q'.,, Ak)}~=, is a period approximating sequence with period *-- 1. q', = lkq.~. 

PROOF. Pick {nk}~-, such that sign (e.~) is constant and 51 k,,~ I, I e ,,~ [ I1 q.~/311 < 

10 -s Vk. We may without loss of generality assume that nk = k. Then set 

t~ = [ I / 0 r  

For i = 0 ,  l , - - . , q ~ -  1, let L = P, or L = Ni as in Proposition 4 applied to 

(qk, jk, 6k, ek). I claim that for every 0 <= i <= qk - l jk i - 1, (L + tqka) 71 / /=  ~ for 

every 0 _-< t =< lk - 1 and 0 < j -< qk - 1, unless t = 0 and j = i. To see this note that 

( j - i ) a  E I j - I , .  If j ~ i  then I j - i  [<qk implies [ [ ( j - i ) a  !1> 1/2qk. But 

] l j l + [ l , l < 2 1 e k l + [ & l < 2 ( l O ' + 1 0 2 ) <  1 
qk = qk -4qk " 

Thus if tqka E l , - - L ,  then [I tqko~ [l >= l] (j - i )a ]l - ( l I, ! + t L-i)> 1/ 4qk. But 

II tqkot II ~ t I[ q~a II < l~ I & 1 < lO~lk i ek 1 < 1 
qk = qk = lO'qk ' 

contradiction! Therefore j = i. Now 

Jlqkfl Jf= l J-~ & + ek l < lO ' ,  ek , qk and Ij l< 
= 2  

imply that I & l  >~ l ek l ,  i.e., ]]qka]l > I t I , I .  Thus for I < t = < l k - l ,  ~ll, f<  

II II < 1/4q~, implying (L + tqka ) A I, = Q. Thus t = 0 as desired. 
t I k - 1 t Now set A~ = U~=o!SkJ-'Ii and Ak = CJ,_o ( A k -  tqk). Upon setting pk = [qk/3]. 

the argument  above shows that  for every x ~ A~, 

G~(x) = $q~(x)+ G , ( x  + q , a ) + . . .  + Sq,(x +(lk - 1)qka) 

= (,ok + sign (ek)) + (lk - 1)pk 

= sign (ek) + l~pk. 

Thus 

But 

tq~(x ) = Sq~(x ) -  q'~fl 

= sign (ek) + lkpk -- Ikqkfl 

= sign (ek) + lk (pk -- qkfl ) 

= sign (ek) - l~ (qk/3). 

]lk (qkfl)] = lk ]] q~fl ]] < I ek [-']] qd3 II, 
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and the latter term approaches zero by hypothesis, so limk~tq;(Ak)= • 1 
according to the sign of the e~'s. 

Since Ak was already seen to be a disjoint union of L +tqka, i= 
0 , ' ' ' , q k  --ljk [-- 1, t = 0 , ' "  ",lk -- I, all of which have measure [ ek ]/qk, we also 

have 

( , )  m(Ak)=lk(qk--[jk[) el~>=~lklek[>~ -- > 1 0  -6" qk ~ ek 

Here we used the inequality [ jk I =< qk/2. Thus infk m (Ak) > 0. Finally, 

II q ;,a II -- II lkqka [1 < l~ II qka II < 1 & ]/qk 1 
= 10~1 ~.~ l< q~, 

so l im~[ Iq~ ,a  II = 0  and {(q;,,Ak)}~=, is a period approximating sequence as 

desired. [] 
Gather ing loose ends we finally have 

PROOF OF THEOREM B. If limq_| sup e (q) > 0 we are finished by Proposit ion 

3. Thus we may assume to the contrary,  and apply Lemma 6 repeatedly with 
_ _ 1 1  . , .  

a - -  2 ,  3 ,  

Suppose first that case (1) held for infinitely many pqc's for some a > 0. Then 

Proposition 7 applies, or else there exists a sequence {(q.,j,,6,,e.)}:=, of 

effective pqc's satisfying ][q, fl II => a I e. I > 6 > 0 Vn. Assuming this second 
[ ]q~ [ j l - I  q - 1  

possibility, set A ,  = ,--~=o I~, B, = I,.Jq:_;j,i L and C, = T\(A~ t.) B.), where 

for i = 0,.  �9 -, q. - 1, L = P~ or L = N~ as in Proposition 4 applied to (q., j,, 6., e.).  

Then m(C.)> z. On the other hand .frtq.(x)dx = 0 implies that  sup. m(C.)< 1, 
since ttq=(fn)l=llqd3ll> . Thus there exist indexes {nk}~-, for which 

{(q.~, C.~)}~=, and {(q.~, D.~)}~=, are both period approximating sequences, where 

either D,~ =A.~  or D.~ =B.~ Vk. But tq , (A.) ,q .(B,)E{tq.(C,)- l ,  tq . (C,)+ 1} 

Vn. Therefore  the periods of these sequences differ by 1, which is thus a period 

of (x, T). 
_ 1 i �9 Then again either Now suppose that it was case (2) that held for a - 2, 3," �9 �9 

Proposition 8 applies, or there exists a sequence {(qn, j., &, e.)}:=, of effective 

pqc's with I J. I < q. /2 and [ e~ I > ~ > 0 Vn. Define A~, B. and C. as above. Then 

and the same argument  finishes the proof. [] 
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3. {Y.7_--o ~ llo.~l(x + ia)-  n/3}~=1 is dense  in E 

PROOF OF COROLLARY C. Suppose to the contrary that B = {x E T I {tn(x)}7~l 

is not dense in E} has positive measure. Then there exist B'  C B of positive 

measure and an open ~b# I C E  such that t n ( x ) ~ I ,  n = 1 , 2 , . . .  Vx ~ B'. Let 

B" = B'  • [0, e ] C X and ~b # I '  C I open such that T" (B") n T • I '  = O Vn > 0. 

Set A --lim,_~ sup T" (B"). A has positive measure since it contains 

lim sup Tq ( B"), 
q ~  

qED(a) 

and by Lemma 2 such T q (B") are contained in a finite measure space (and have 

constant measure > 0). As TA = A, A = A + (0, 1) by Theorem B. Contradic- 

tion then follows by the ergodicity of t ~ t +/3 on E/Z ,  since A n T • I '  = O. []  
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